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Calorimeter Description



R. Zitoun, Stony Brook and LAPP           CALOR 2004 31 March 20043

Liquid Argon Calorimeter
• 3 cryostats: central (CC) + 2 end caps (EC)
• 3 sections: EM + HAD + CH
• Plate geometry

2.3 mm LAr gaps + 4.6 mm G10 electrodes
• 1.6 kV;  ~ 450 ns drift time
• Coverage: |η|<4.2
• Granularity: ∆η × ∆ϕ = 0.1 × 0.1

0.05 × 0.05 at shower max

Fe  46.5 mm3 + 3 + 3EC CH

U   6 mm1.3 + 1.2 + 1.2 + 1.2EC FH

Fe  1.4 mm + U 4 mm0.3 + 3 + 8 + 9EC EM

Cu 46.5 mm3CC CH

U   6 mm1.3 + 1 + 0.9CC FH

U 3mm2 + 2 + 7 + 10CC EM

Absorber# of X0/λ0
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Results from Run I – Upgrade for Run II

• Run I: very successful operation
• Energy resolution (W mass paper)
• e:  central σE / E = 13% /√E +   1.5%   +   0.4 GeV/E

end caps σE / E = 16% /√E
had: σE / E = 80% /√E  +     4%    +   1.5 GeV/E

• Less than 50 dead channels out of 55000

• Run II upgrade: 3.5 µs between crossings ? 396 ns
• Replace front end electronics and cables
• Keep cabling, crates (power supplies) and ADC cards
• Replace calibration system, timing and control system
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Electronics Description
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BLS
Filter/
Shaper

L1 SCA

Trig. sum

L2 SCA

BLS board

Basics of Readout
• Detector signal ~ 450 ns long
• Charge preamplifiers
• BLS boards

• Short shaping ~2/3 of signal integrated
• Signal sampled and stored every 132 ns in 

analog buffers waiting for L1
• Samples retrieved on L1 accept and baseline 

subtraction (BLS) to remove pile up and low 
frequency noise

• Signal retrieved after L2
• Digitized

ADC

Detector

Preamp/
Driver

After shaper

Signal from preamp
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Preamplifiers

• Charge preamplifier similar to Run I

• Hybrid on ceramic
• Dual front end FET (noise/v2)
• Compensation for detector capacitance

• 0.25 – 4 nF ? 14 different species

• up to 48 channels per board
• i.e. 4 towers (∆η × ∆ϕ = 0.2 × 0.2)
• 1152 boards

• Very reliable system (inside iron, ~ 1 day 
access time!)

out
in

2”

FET

driverpreamp
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• 48 channels from ∆η × ∆ϕ = 0.2 × 0.2
i.e. 1 trigger tower
• Trigger summers + drivers
• Shapers
• L1 and L2 analog memories (SCA)
• Baseline subtraction

• 4 daughter cards (∆η × ∆ϕ = 0.1 × 0.1)
• 2 gains ×8 and ×1 (12–bit ADC,

15–bit dynamic range)
• Analog memories not

simultaneously read–write

• In the collision hall, short access time (~ 1 hour)

BLS Boards

L1 SCA L2 SCA
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SCAs
• Designed by LNBL, FNAL, SUNY Stony Brook
• 12 channels × 48 cells deep memories
• Allow ~ 6 µs for L1 decision time (4.2 µs)
• Read time 2.5 µs
• No dead time @ 10 kHz L1 trigger rate

• On–board  properties
• pedestal dispersion 0.6 ADC

count  rms; acts as coherent noise
• non linearity at low ADC values

(software corrected)

2.5 cm

12 channels

48
deep

a really bad one!

20 ADC counts
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ADC Cards
• 144 ADC cards (12 crates x 12 cards)  from Run I
• Each card houses 24 successive approximation digitizers (2.5 µs)
• Each digitizer services 16 sequential frames

• pedestal subtraction (optional)
• settable zero suppression ? only ~ 5000 cells read out @ 1.5 σ

Timing and Control Cards
• Receives accelerator, clock and trigger signals
• Distributes those to BLS and ADC boards
• Keeps track of where relevant data are sitting in SCAs
• Generates busy signals
• Driven by code in FPGAs

12 Timing and Control

Cards

Trigger

system

BLS ADC

Timing and Control 
Controller

data to L3
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Pedestals – Noise
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Noise

• Electronics contribution (except preAmps)  < 1 ADC count

• Noise increases with capacitance

• Uranium noise (HV on/off)
• sensitive only for large area

channels (high capacitance)
• Gaussian!

5pF preAmps
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Coherent Noise
• from SCAs below 1 ADC count

• D∅ had to be grounded for safety reasons
• designed to have a single point grounding
• was OK for Run I and then forgotten by many of the community

• and some day, …

• Dozen of contacts of D∅
and with “ground”

• Ground repaired + some
temperature monitoring
cables disconnected

• Gone (for ever?)
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Pedestal Stability
• Pedestal run taken in between stores (every ~ 30 hours)
• Mean values and rms computed in L3 filters (data not written to tape)
• 104 events @ 20 Hz, altogether ~ 15’

• Excellent long term stability
• Tool able to find channels drifting by <1 ADC count/month

• No pedestal shift in physics
No change in noise

0.1 ADC count

? 2 months ?
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Calibration
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• Similar to ATLAS system
• 1 mH inductance loaded by a DC current
• opening a switch diverts current to ground
• inductance produces exponential calibration current through 

precision injection resistors
• but charge injected at preamp input

• 12 pulsers
• 6×16 DC currents; a single 18-bit DAC controls intensities (∝

pulse height); individually enable; better than 0.2% linearity
• 6 command lines each with a programmable 8-bit delay (0–400 ns) 

(∝ pulse start)

• 12×6×16 switches close to preamplifiers

Pulser System
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Calibration Pulses
• Measured by varying the delay

• Reflection on detector capacitance
due to injection close to preAmps
• most pronounced for high 

capacitance cells (HAD)
• still visible in EM channels

• Needs to be taken into account

em channel

high capacitance cell

1 µs
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inner cryostat cable

feed-
through

outer 
cryostat 
cable

detector 
parameters

Reflection Measurements

• Using a Time Domain Reflectometer
• send a square pulse
• measure reflected signal
• complicated fit yields

• detector capacitance
• strip capacitance and inductance
• various cable lengths
• skin effect parameter

• 55,000 channels measured and
parameters extracted

capacitance of D-Type 
detector channels
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Electronics Simulation
• Individual channel properties before preAmp known
• Cables, detector capacitance, etc. known

? Predicted input pulse to preamps

• Generic description of each preamp type
• Generic description of one shaper

red line = preAmp input
black line = shaper output

HAD channelEM channel
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• In calibration mode, from 
• predicted input signal to preamp (channel per channel)
• measured output signal from BLS

? compute numerically transfer function H (preamp + shaper)

• In physics mode, from
• predicted physics input signal to preamp
• transfer function H

? predict channel to channel variation in pulse height

• Calibration = correction for those variations

• Long way to go!

Plans for Full Calibration
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Other Pieces
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Inter Cryostat Region
• Limited coverage of region 1.1<|η|<1.4
• ICD detector similar to Run I

• Scintillator + WLS fiber + clear fibers
• Reuse of R647 Hamamatsu PMT’s (low B)
• 2×16 modules (384 channels)
• Electronics adapted from calorimeter
• Same RO
• Same electronics calibration system as
• calorimeter
• PMT calibration with cosmics on test

stand + LED pulsers for monitoring

• Massless gaps in CC and EC
ICD
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Preshower
• 2 teslas Solenoid in Run II (60 cm radius)
• Energy loss backed by a 2 X0 preshower
• Scintillating fibers + lead
• WLS readout + ~10 m clear fibers
• VLPCs + 8–bit ADC
• Central (|η|<1.3, CPS)

• 7680 channels
• 3 layers (axial, u, v)

• End caps (1.5<|η|<2.5, FPS)
• 4 layers (u, v) + lead
• 15000 channels

• Effort yet concentrated on
track matching and γ/π0 rejection

CENTRAL 
CALORIMETER (CC)

END-CALORIMETER 
(EC) WALLS

+z

pp beam (Beryllium 
Pipe)

SOLENOID
MAGNET (2 T)

FPS

CPS
r-φ End-
View
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Trigger
• Granularity 0.2×0.2  down to |η| = 3.2
• Analog signal pickup in BLS boards
• Sums of em and had sections separately
• Converted to ET

• Flash digitized @132 ns; 8 bit precision.
• Pedestal and gain compensation
• Excellent comparison with “precision” readout

• Alternative route to check data
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Some Results
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LED signal MC

fakes

L = 200 / pb

Bkg

EM Performance
• Benchmark is Z peak. Also J/Ψ and Υ

available to compute in beam resolution
(see Sophie Trincaz – Duvois’s talk)

• High mass pairs

Z mass peak

475 GeV ee pair
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MET
• Missing ET quality very sensitive to any

calorimeter problem (“hot cells”)
• Resolution dominated by jet resolution

• Bench mark: W mass ?

• Underlying event ?

ET Distribution of Electrons

Transverse Mass

?L = 42 pb-1
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Jets
• Resolution measured from γ/π0–jet events

(see Sacha Kupco’s talk)
• Response uniformity
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Summary

• Mechanical design and building of 1980’s

• But almost entirely new electronics build for high luminosity
• no test beam debugging

• Commissioning not ended by the time good beam was delivered
• no long time of cosmic run  debugging as in Run I

• Debugging with beam is very difficult!

• Still many detector studies in progress to get ultimate information out 
of the data

• Data quality (see next talk, Slava Shary, LAL, Orsay)


